The International Sampling Program: Continent of Origin and Biological Characteristics of Atlantic Salmon Collected at West Greenland in 2015

by Timothy F. Sheehan, Phil Davison, Denise Deschamps, Alan Drumm, Michael Millane, Tom Morgan, Paul Music, Art Niven, Rasmus Nygaard, Timothy
L. King, Martha J. Robertson, Niall Ó Maoiléidigh

The International Sampling Program: Continent of Origin and Biological Characteristics of Atlantic Salmon Collected at West Greenland in 2015

by Timothy F. Sheehan ${ }^{1}$, Phil Davison², Denise Deschamps ${ }^{3}$, Alan Drumm ${ }^{4}$, Michael Millane ${ }^{5}$, Tom Morgan ${ }^{6}$, Paul Music ${ }^{7}$, Art Niven ${ }^{8}$, Rasmus Nygaard ${ }^{9}$, Timothy L. King ${ }^{10}$, Martha J. Robertson ${ }^{11}$, Niall Ó Maoiléidigh ${ }^{4}$
${ }^{1}$ NOAA Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, Massachusetts 02543, USA
${ }^{2}$ Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK (England \& Wales)
${ }^{3}$ Ministère des forêts, de la faune et des parcs, Direction de la faune aquatique, 880, chemin Sainte-Foy, Québec, Québec G1S 4X4, Canada ${ }^{4}$ Marine Institute, Fisheries Ecosystems Advisory Services, The Farran Laboratory, Furnace, Newport, Co. Mayo, Ireland ${ }^{5}$ Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin 24, Ireland
${ }^{6}$ Marine Scotland, Freshwater Laboratory, Ferryden, Montrose, DD10 9SL, UK (Scotland)
${ }^{7}$ NOAA Fisheries Service, Northeast Fisheries Science Center,
Maine Field Station, 17 Godfrey Drive - Suite 1, Orono, ME 04473, USA
${ }^{8}$ Loughs Agency, 22 Victoria Road, Derry~Londonderry, BT47 2AB, UK (Northern Ireland)
${ }^{9}$ Grønlands Naturinstitut, Kivioq 3, 3905 Nuussuaq, DK-3900 Nuuk, Greenland
${ }^{10}$ U. S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, West Virginia 25430, USA
${ }^{11}$ Fisheries and Oceans Canada, Science Branch, P.O. Box 5667, St. John's, Newfoundland and Labrador, A1C 5X1, Canada

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, Massachusetts

Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review, and most receive copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

If you do not have Internet access, you may obtain a paper copy of a document by contacting the senior Center author of the desired document. Refer to the title page of the document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (i.e., non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

Information Quality Act Compliance: In accordance with section 515 of Public Law 106554, the Northeast Fisheries Science Center completed both technical and policy reviews for this report. These predissemination reviews are on file at the NEFSC Editorial Office.

This document may be cited as:

[^0]
TABLE OF CONTENTS

Introduction 1
Continent of Origin 5
Biological Characteristics of the Catches 6
Acknowledgements 7
References Cited 8
Table 1. Evaluation of underreporting in sampled communities during the 2015 Greenland Atlantic salmon (Salmo salar) fishery by community/Northwest Atlantic Fisheries Organization (NAFO) division. 9
Table 2. Reported landings (kg) for the Greenland Atlantic salmon (Salmo salar) fishery (2002-2015) by Northwest Atlantic Fisheries Organization (NAFO) division as reported by the Home Rule Government and the division-specific adjusted landings where the sampling teams observed more fish landed than were reported. 10
Table 3. Reported tag recaptures $(\mathrm{n}=6)$ from the 2015 Greenland Atlantic salmon (Salmo salar) fishery 13
Table 4. The continental proportions of North American (NA) and European (E) Atlantic salmon (Salmo salar) caught in West Greenland 2015 by Northwest Atlantic Fisheries Organization (NAFO) Division. 14
Table 5. The catch weighted numbers of North American (NA) and European (E)Atlantic salmon (Salmo salar) caught at West Greenland from 1971-2014 and theproportion of the catch by weight.15
Table 6. Annual mean fork lengths and whole weights by continent of origin (NA - NorthAmerican and E-European) and sea age (1SW - 1 sea-winter, 2SW - 2 sea-winter andPS - previous spawner) of Atlantic salmon (Salmo salar) caught at West Greenland,1969-201517
Table 7. Mean fork lengths (cm) and whole weight (kg) by sea age (1SW - 1 sea-winter and 2SW - 2 sea-winter), continent of origin and Northwest Atlantic Fisheries Organization (NAFO) division for Atlantic salmon (Salmo salar) caught at West Greenland in 2015 with corresponding standard deviation (S.D.) 18
Table 8. The smolt-age (river age) composition (\%) of Atlantic salmon (Salmo salar) by continent of origin (NA - North American and E - European) and Northwest Atlantic Fisheries Organization (NAFO) division caught in 2015 at West Greenland. 19
Table 9. River age distribution (\%) for North American and European origin Atlantic salmon (Salmo salar) caught at West Greenland, 1968-2015. 20

Table 10. The sea-age (1SW - 1 sea-winter, 2SW - 2 sea-winter, and Previous Spawners) composition of Atlantic salmon (Salmo salar) by continent of origin (NA - North American and E - European) and Northwest Atlantic Fisheries Organization (NAFO) division caught at West Greenland in 2015.
Figure 1. Nominal catches and commercial quotas (metric tons, round fresh weight) of Atlantic salmon (Salmon salar) at West Greenland for 1960-2015 (top panel) and 20062015 (bottom panel).

Figure 2. Map of southwest Greenland showing communities to which Atlantic salmon
(Salmo salar) have historically been landed.. 24
Figure 3. The weighted proportions of North American and European Atlantic salmon (Salmo salar) caught at West Greenland from 1982-2015. 25

Figure 4. Proportions of unsampled adjusted landings and North American origin and European origin Atlantic salmon (Salmo salar, left panels) and of sampled adjusted landings and North American origin and European origin Atlantic salmon (right panels) at West Greenland from 2005-2015. Rows represent Northwest Atlantic Fisheries Organization divisions (NAFO, top row represents division 1A and bottom row represents division 1F).

Figure 5. The weighted numbers of North American and European Atlantic salmon (Salmo salar) caught at West Greenland from 1982-2015 (top) and 2006-2015 (bottom).
.27
Figure 6. Mean uncorrected whole weight (kg) of European and North American 1 seawinter 28

Abstract

An Atlantic salmon (Salmo salar) mixed-stock fishery operating from August through October exists off the western coast of Greenland and primarily harvests 1 sea-winter (1SW) North American and European origin salmon destined to return to natal waters as 2 sea-winter spawning adults. To collect data on the biological characteristics and origin of the harvest necessary for international stock assessment efforts, parties to the North Atlantic Salmon Conservation Organization's (NASCO) West Greenland Commission agreed to participate in an international sampling program for the 2015 fishery. The sampling program was coordinated by the USA (NOAA Fisheries Service) and involved 7 samplers from 6 countries, deployed among 4 communities (Sisimiut, Maniitsoq, Paamiut, and Qaqortoq) located on the west coast of Greenland. Reported landings in 2015 were 56.8 metric tons (t). Data on length, weight, freshwater and marine age from scale samples, and continent of origin from genetic analysis of tissue samples were collected. Since 2002 (with the exception of 2006 and 2011), unreported landings were identified by comparing the reported landings to the weight of the sampled harvest for each community. Unreported landings were not detected in 2015. In total, 1,964 salmon were observed by the sampling teams, and 1,708 of these were sampled for biological characteristics. Approximately 12% by weight of the reported landings were observed by the sampling teams. No samples were collected from factory landed fish. As seen since the mid-1990s, a high proportion of the harvested stock was of North American origin (79.9\%) with the balance being European origin (20.1\%). North American origin fish were primarily freshwater age 2 or 3 years (31.6% and 40.6% respectively), and 1SW (97.0\%). European origin fish were primarily freshwater age 2 (54.9%) and 1SW (98.2\%). The mean length of North American 1SW salmon was 65.6 cm , and the mean whole weight was 3.36 kg ; the mean length of European 1SW salmon was 64.4 cm , and the mean whole weight was 3.13 kg . Approximately 13,500 North American (44.6 t) and 3,900 European salmon (11.2 t) were harvested, not taking into account any unreported catch. The sampling program was successful in adequately sampling the Greenland catch, both temporally and spatially, and provided essential input data to international stock assessment efforts, which provide stock status and catch options for subsequent fishery management.

Introduction

An important mixed-stock Atlantic salmon (Salmo salar) fishery exists off the western coast of Greenland. This fishery takes primarily 1 sea-winter (1SW, fish that have spent one winter at sea) North American and European origin salmon that would potentially return to natal waters as mature 2 sea-winter (2SW) spawning adults or older. Effective management of the resource on both continents requires annual collection of accurate landings data, continent of origin assignments, and biological characteristics data to assess the impact of the fishery on the contributing stock complexes. Data collected from the fishery are also required for use in assessment models which predict prefishery abundance of North American and European stocks to provide fishery managers with catch options required for setting harvest regulations.

Atlantic salmon were first documented off the coast of Greenland in 1780 and were targeted by a small local inshore gillnet fishery (Jensen 1990). During the early 1960s, the fishery developed an international presence; in 1965, vessels from Norway, Denmark, Sweden, and the Faroe Islands arrived and introduced an offshore drift-gillnet fishery (ibid.). Reported
catches increased to a high of 2,689 t in 1971 (Figure 1). Mark-recapture studies conducted during this period indicated that the Atlantic salmon caught in this fishery were of North American and European origin and were not uniformly distributed along the coast (Reddin et al. 2012). Because of the concerns that this fishery would have deleterious impacts on the contributing stock complexes, a quota system was agreed upon and implemented in 1976 (Colligan et al. 2008), and since 1984, catch regulations have been established by NASCO.

Since 1969, a coordinated international sampling program has been conducted to obtain biological samples from the Greenland salmon fishery. From 1969-1981, research vessels were used to obtain samples. Since 1982, international teams of samplers have been deployed throughout West Greenland to obtain samples from fish processing plants (when a commercial fishery is allowed), local markets, and other vendors from individual communities where Atlantic salmon are being landed. The focus of this sampling program is to collect biological data and samples. Historically, length, weight, and scale samples were collected, and individual salmon were scanned for fin clips or external/internal tags. Beginning in 2002, tissue samples have been collected from fish for genetic stock identification.

The purpose of this paper is to:

- Describe the international sampling program;
- Present the results from the continent of origin analysis; and
- Summarize the biological characteristics of the catch from West Greenland during the internal-use-only fishery of 2015.

International Sampling Program

The West Greenland Commission (WGC) of NASCO has agreed to regulatory measures for the West Greenland fishery for all years from 1984 onward (with the exception of 1985, 1991, 1992, and 1996). Since 2006, these regulations have been applied as multi-year measures. The latest measure was established for the period 2015 to 2017 (NASCO 2015; see WGC(15)21), and these regulations would also apply in 2016 and 2017 if the Framework of Indicators (FWI) developed and updated by the International Council for the Exploration of the Sea (ICES 2007, 2015) indicate no significant change, implying that a reassessment of the catch advice would not be required.

From 2002 to 2011 the quota for commercial landings of Atlantic salmon for export was set to 0 tons by the Government of Greenland, but the internal-use-only fishery for personal and local consumption was unaffected. Selling of salmon to hotels, institutions, and local markets by licensed fishermen and an unlicensed fishery for private consumption were allowed. The internal-use-only fishery was without a quota limit, but in the past has been estimated at 20 t annually. The fishery generally operates during the months of August, September, and October, and since 2005 the fishery has opened on 1 August and closed on 31 October. The fishery is regulated according to the Government of Greenland Executive Order No. 12 of 1 August 2012, an update to the previous order (Government of Greenland Executive Order No. 21 of 10 August 2002). In 2015, the Government of Greenland delayed the opening of the fishery until 15 August with a closing date of 31 October.

From 2012-2014, the Government of Greenland set the national quota for commercial landings of Atlantic salmon for export to 0 tons. No export of salmon from Greenland was allowed. However, in 2012 the Government of Greenland set a 35 t national quota for landing at fishing processing factories to provide a year-round supply of locally harvested Atlantic salmon within Greenland. The internal-use-only fishery for personal and local consumption remained
unaffected and unrestricted by the quota for factory landings. A factory landings only quota was again set to 35 t in 2013 but was then reduced to 30 t in 2014. In 2015 the Government of Greenland unilaterally set a quota of 45 t for all components of its fishery, as a quota could not be agreed to by all parties of the WGC of NASCO (NASCO 2015; see WGC(15)21).

Under NASCO’s West Greenland Sampling Agreement (NASCO 2015; see WGC(15)22), parties to NASCO’s WGC agreed to provide staff to sample Atlantic salmon catches from the West Greenland internal-use-only fishery during the 2015 season.

The objectives of the sampling program were to:

- Continue the time series of data (1969-2014) on continent of origin and biological characteristics of the Atlantic salmon in the West Greenland fishery;
- Provide data on mean weight, length, age, and continent of origin for use in the North American and European Atlantic salmon-run reconstruction models; and
- Collect information on the recovery of internal and external tags.

As outlined in the sampling agreement, the European Union agreed to provide staff to sample the fishery for a minimum of 8 person-weeks (which would amount to 8 weeks of sampling); the United States agreed for a minimum of 2 person-weeks; and Canada for a minimum of 2 person-weeks. Samplers from various countries involved in the program were as follows:

Country	Sampler	Institute	Period	Community (NAFO Division)
USA	Paul Music	NOAA Fisheries Service	1 Sep - 13 Sep	Paamuit (1E)
UK (Scotland)	Tom Morgan	Marine Scotland	3 Sep - 22 Sep	Paqortoq (1F)
Canada	Denise Deschamps	Ministère des Forêts, de la Faune et des Parcs Inland Fisheries Ireland	4 Sep - 25 Sep	Maniitsoq (1C)
Ireland	Michael Milane	Sep - 29 Sep	Sisimiut (1B)	

The coordination of this effort was handled by the USA (NOAA Fisheries Service) with assistance from the Greenland Institute of Natural Resources (GINR). Individual samplers were deployed during the course of the fishing season to provide the best possible spatial and temporal coverage of the fishery. Samplers were stationed in 4 communities that are located within 4 Northwest Atlantic Fisheries Organization (NAFO) divisions (Figure 2): Sisimiut (1B), Maniitsoq (1C), Paamiut (1E) and Qaqortoq (1F). Samplers were not deployed to Nuuk (1D) because of the continued uncertainty of access to landed Atlantic salmon in this community (ICES 2012).

In addition, arrangements were made to collect biological characteristics data and samples from 3 of the 5 factories registered to receive Atlantic salmon. The factories were located in the communities of Kangaamiut (NAFO division 1C), Atammik (1C), and Qeqertarsuatsiaat (1D). Sampling instructions and supplies for sampling 300 salmon were provided to GINR, and these packages were forwarded to the individual factories at the beginning of the fishery. The expectation was for factory staff to collect a maximum of 25 samples per day to spread the sample collection over the fishing season. Unfortunately, because of miscommunication and the opening of factory landings being delayed until 9 October, a small tonnage (3.5 t) of landings spread across 5 factories, and no factories samples were collected in 2015.

Reported landings in 2015 were 56.85 t (55.88 t for West Greenland and 0.97 t for East Greenland ICES Statistical Area XIV). In the past, nonreporting of harvest was identified by comparing the reported landings to the sample data. From 2002-2014 (with the exception of 2006 and 2011), the sampling team documented more fish than reported in at least 1 division (ICES 2015). A documented salmon could be one that was either sampled, checked for an adipose clip only, or not sampled but seen. When this type of discrepancy occurs, the reported landings are adjusted to include the total weight of the fish documented as being landed during the sampling period, and the adjusted landings are included in all subsequent assessments. Considering that samplers are not stationed within a community throughout the entire fishing season and that there are numerous communities without samplers present, these adjusted landings should be considered minimum estimates.

In 2015 no discrepancies were identified (Table 1). The reported landings and adjusted landings for 2002-2015 are presented in Table 2. To provide the most reliable estimate of catch, which is necessary for estimating the potential fishery impacts on contributing stocks, it is important to continually improve the catch reporting procedure and the quality of the catch statistics. Factory landings and samples are not considered within this process since these landings are strictly regulated by the Government of Greenland (e.g., only licensed commercial fishers can land at designated factories) and are accounted for and reported by the factory managers to the Greenland Fisheries License Control Authority on a daily to weekly basis.

Landed fish were sampled at random, and when possible, the total catch was sampled. Individual fish were measured (fork length, mm) and weighed (gutted weight (GW) or whole weight (WW), kg). Scales were taken for age determination, and adipose fins were taken for DNA analysis for stock identification. Fish were also examined for fin clips, external marks, external tags, and internal tags. Adipose-clipped fish were sampled for microtags (coded wire tags).

Sampling teams observed 1,964 salmon. Of this total, 1,708 were sampled for biological characteristics, and 0 salmon were sampled by the factory staff (representing $\sim 12 \%$ by weight of the reported landings). A total of 163 fish were only checked for an adipose clip, and 93 were documented as being landed but were not sampled or examined further. Biological characteristics data were collected as follows:

- 1,708 fork lengths;
- 1,619 gutted weights;
- 99 whole weights;
- 1,704 scale samples; and
- 1,674 genetic samples.

A total of 30 adipose-clipped fish was documented. Of all the fish examined by the samplers, none had an external or an internal tag. A total of 6 tags were provided directly by a fisher or consumer to a sampler or the GINR, many of the tags were from historic releases across the North Atlantic. The tag breakdown was as follows (Table 3):

- 6 Carlin tags

Nonfactory sampling often occurs at a local market which is a centralized location where harvested salmon are present and available. Prior to any sampling, the sampler always obtains permission from the market manager. This arrangement has generally been successful for all samplers, although there have been issues in some years in Nuuk (Sheehan et al. 2013). Because of concerns that proper arrangements had not been made to allow sampling of fish in Nuuk in 2015, no sampling occurred in that community. In 2014 some minor problems were encountered when samplers were not allowed access to fish. Further communication from the Program Coordinator and GINR helped rectify the situation. These issues were restricted to Maniitsoq and Qaqortoq. No such issues were identified in 2015.

The limitation of the fishery to internal-use-only caused some practical problems for the sampling teams; however, the sampling program provided adequate representation of the Greenland catch, both temporally and spatially. There continued to be no sampling in Nuuk, which results in a potential for bias when describing the biological characteristics of the harvest, stock assessment results, and catch advice. However, this potential bias is expected to be minimized given that sampling occurred both to the north and south of Nuuk.

Continent of Origin

Fin tissue samples were collected and preserved in RNAlater ${ }^{\text {TM }}$, an aqueous, nontoxic tissue and cell storage reagent that stabilizes and protects cellular RNA. A total of 1,674 usable samples were collected from 4 communities in 4 NAFO divisions: Sisimiut in 1B ($\mathrm{n}=497$), Maniitsoq in 1C ($\mathrm{n}=890$), Paamiut in 1E ($\mathrm{n}=169$), and Qaqortoq in 1F $(\mathrm{n}=118)$. A small number of tissue samples ($\mathrm{n}=8$) were collected, but not processed due to poor sample quality and were therefore removed from the database.

DNA isolation and the subsequent microsatellite analyses were performed according to standardized protocols (King et al. 2001; Sheehan et al. 2010). A database of approximately 5,000 Atlantic salmon genotypes of known origin was used as a baseline to assign the samples to continent of origin. In total, 79.9% of the salmon sampled were of North American origin and 20.1\% were of European origin. The NAFO division-specific continent of origin assignments are presented in Table 4.

These findings show that high proportions of fish from the North American stock complex continue to contribute to the fishery (Figure 3). The variability in the recent stock complex contributions between divisions and the deviation from past trends (Figure 4) underscore the need to annually sample multiple NAFO divisions to achieve accurate estimates of continental contributions to the harvest.

Variations in the estimated weighted proportions and number of North American and European salmon harvested in the fishery during 1987-2015 are shown in Table 5 and Figure 5. The 2015 North American weighted contribution (79\%) to the fishery was higher than the longterm mean (1982-2014, 69\%) but approximately equal to the recent 10-year mean (2005-2014, 80\%). The European weighted contribution (21\%) to the 2015 fishery was lower than the long-
term mean (1982-2014, 31\%) but approximately equal to the 10-year mean (2005-2014, 20\%). In terms of numbers of fish, the 2015 fishery caught approximately 13,500 North American salmon ($\sim 44.6 \mathrm{t}$) and 3,900 European fish ($\sim 11.2 \mathrm{t}$). The 2015 total number of fish harvested $(17,400)$ is lower than in $2014(18,200)$. It is the 2nd highest total since $1997(21,300)$, the $16^{\text {th }}$ highest total in the 32 year time series (1982-2015 with no harvest estimates in 1993 and 1994), but only 5.2% of the maximum estimate of 336,000 fish harvested in 1982.

Biological Characteristics of the Catches

Biological characteristics (length, weight, and age) were recorded for all sampled fish. Overall across all sea ages, the mean sampled fork length was 65.7 cm , and the mean gutted weight was 3.02 kg .

An overall decrease in mean whole weight of both European and North American 1SW salmon occurred between 1969 and 1995 (Table 6 and Figure 6). This trend was reversed in 1996 when mean weights began to increase, although evidence suggests that these trends may be partially explained by annual variation in the timing of the sampling program (ICES 2011; ICES 2015). In 2015, the mean length of North American 1SW salmon was 65.6 cm , and the mean whole weight was 3.36 kg ; the mean length of European 1SW salmon was 64.4 cm , and the mean whole weight was 3.13 kg . The North American 1SW fork length estimate was equal to the 2014 value (65.6 cm) and approximately equal to the previous 10-year average (65.4 cm , 20052014). The European 1SW mean fork length was slightly higher than the 2014 value (63.6 cm) and approximately equal to the previous 10 -year average ($64.7 \mathrm{~cm}, 2005-2014$). The North American 1SW whole weight was slightly higher than the 2014 value (3.25 kg) and previous 10year average (3.22 kg , 2005-2014). The European 1SW whole weight was higher than both the 2014 value (3.02 kg) and previous 10-year average ($3.19 \mathrm{~kg}, 2005-2014$). A summary of the mean fork lengths and whole weights in the 2015 fishery by sea age, continent of origin, and NAFO division is presented in Table 7. Note that the weight data have not been adjusted for date of capture, and hence may not represent an actual change in mean weight over the time series because fish sampled later in the fishing season have had additional time to grow compared to fish sampled early in the season (ICES 2011).

The smolt age distribution of the sampled catch by continent of origin and NAFO division is presented in Table 8. The smolt age distributions by origin for all North American and European origin salmon caught (1968-2014) are provided in Table 9.

In 2014, the percentages of fish by smolt age within continent of origin were:

| Continent of origin | Percent of continent of origin by smolt age (years) | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| North American | 0.1% | 31.6% | 40.6% | 21.6% | 6.0% | 0.2% |
| European | 9.2% | 54.9% | 28.8% | 5.8% | 1.2% | 0.0% |

The mean smolt age of the 2015 North American origin samples was 3.0 years. Although age 1 smolts historically represent a small proportion of the catch (previous 10-year mean of $1.2 \%, 2005-2014)$, the 2015 value (0.1%) is 1 of the lowest. There has been a consistent trend
over the past 2 decades of decreasing contributions of age 1 smolts. This is indicative of the relatively minor contributions of the more southerly North American populations as age 1 smolt production is restricted to the southern end of the range (ICES 2004). The percentage of smolt age 2 salmon of North American origin in the 2015 fishery (31.6\%) is higher than in 2014 (26.0\%) and the previous 10-year mean (26.5%, 2005-2014). Age 3 and older smolts accounted for 68.3% of the 2015 harvest of North American fish, which is slightly lower than the previous 10 -year mean ($72.4 \%, 2005-2014$) and the overall mean for the 42 -year time series (66.0%, 1968-2015 excluding data gaps in 1977 and 1993-1994).

The mean smolt age of the European salmon in 2015 was 2.3 years. The percentage of smolt age 1 (9.2%) is higher than 2014 value but below the previous 10 -year mean of 11.4% (2005-2014). The percentage of smolt age 2 (54.9\%) in the 2015 fishery is lower than in 2013 (60.7%) and the previous 10 -year mean (59.6%, 2005-2014). The contribution of age 3 and older European origin smolts (35.9\%) is greater than the previous 10-year mean (29.0\%, 2005-2014). In 2014, the proportions by sea age by continent of origin were:

Continent of origin	Percent of continent of origin by sea age (years)		
	1SW	2SW	Repeat Spawners
North American	97.0%	0.7%	2.3%
European	98.2%	0.8%	1.9%

As expected, the 1SW age group was dominant (97.3\%) in the 2014 fishery (Table 10). This value is higher than the 2014 value (92.6\%). Concerns have been raised over recent difficulty with discerning winter annuli from apparent "checks" in the marine zone of Atlantic salmon multi-sea winter scales. Care should be taken to properly discern true marine annuli from growth checks, and further study of this phenomenon is warranted.

Acknowledgements

We would like to acknowledge the Greenland Institute of Nature Resources and the fishers and residents in Greenland who provided access to their fish. We would also like to thank the various laboratories and agencies for supporting the program, providing the samplers, and for the funding necessary to support the sampling in Greenland. Funding support for the samplers was provided by NOAA Fisheries Service (for Paul Music), Marine Scotland (for Tom Morgan), Fisheries and Oceans Canada, Moncton (for Denise Deschamps), Inland Fisheries Ireland (for Mick Milane), Loughs Agency (for Art Niven), Marine Institute (for Alan Drumm), and Centre for Environment, Fisheries and Aquaculture Science (for Phil Davison). Fisheries and Oceans Canada (Newfoundland and Labrador Region) conducted the aging of all scale samples collected and maintains the master sampling database. NOAA Fisheries Service provided funding to the U. S. Geological Survey to support the genetic processing and continent of origin analysis. Reference to trade names does not imply endorsement by any collaborating agency or government.

References Cited

Colligan M, Sheehan T, Pruden J, Kocik J. 2008. The challenges posed by international management of Atlantic salmon: balancing commercial, recreational and societal interests - The North Atlantic Salmon Conservation Organization (NASCO). In Schechter MG, Leonard NJ, Taylor WW (eds.), International Governance of Fisheries Ecosystems: learning from the past, finding solutions for the future. American Fisheries Society; p. 458.

King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA. 2001. Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Molec Ecol. 10: 807-821.

ICES. 2004. Report of the Working Group on North Atlantic Salmon (WGNAS), 29 March - 8 April 2004, Halifax, Canada. ICES CM 2004/ACFM:20. 293 p.

ICES. 2007. Study Group on Establishing a Framework of Indicators of Salmon Stock Abundance (SGEFISSA), 27-30 November 2006, Halifax, Canada. ICES CM 2007/DFC:01. 71 p.

ICES. 2011. Report of the Working Group on North Atlantic Salmon (WGNAS), 22-31 March 2011, Copenhagen, Denmark. ICES CM 2011/ACOM:09. 286 p.

ICES. 2012. Report of the Working Group on North Atlantic Salmon (WGNAS), 26 March-4 April 2012, Copenhagen, Denmark. ICES CM 2012/ACOM:09. 322 p.

ICES. 2014. Report of the Working Group on North Atlantic Salmon (WGNAS), 19-28 March 2014, Copenhagen, Denmark. ICES CM 2014/ACOM:09. 433 pp.

ICES. 2015. Report of the Working Group on North Atlantic Salmon (WGNAS), 17-26 March, Moncton, Canada. ICES CM 2015/ACOM:09. 332 pp.
Jensen JM. 1990. Atlantic salmon at Greenland. Fish Res. 10: 29-52.
NASCO (North Atlantic Salmon Conservation Organization). 2015. Report of the Thirty-Second Annual Meetings of the Commissions. Happy Valley-Goose Bay, Canada, 2-5 June 2015.

Reddin, DG, Hansen, LP, Bakkestuen, V, Russell, I, White, J, Potter, ECE., Sheehan, TF, Ó Maoiléidigh, N, Dempson, JB, Smith, GW, Isaksson, A, Fowler, M, Jacobsen, JA, Mork, KA, and Amiro, P. 2012. Distribution of Atlantic salmon (Salmo salar L.) at Greenland, 1960s to present. ICES J Mar Sci. 69(9): 1589-1597.

Sheehan TF, Legault CM, King TL, Spidle AP. 2010. Probabilistic-based genetic assignment model: assignments to subcontinent of origin of the West Greenland Atlantic salmon harvest. ICES J Mar Sci. 67: 537-550.
Sheehan TF, Assunção MGL, Deschamps D, Laughton B, Ó Cuaig M, Nygaard R, King TL, Robertson MJ, Ó Maoiléidigh N. 2013. The International Sampling Program: Continent of origin and biological characteristics of Atlantic salmon collected at West Greenland in 2012. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 13-20; 25 p.

Table 1. Evaluation of underreporting in sampled communities during the 2015 Greenland Atlantic salmon (Salmo salar) fishery by community/Northwest Atlantic Fisheries Organization (NAFO) division. The total number of salmon documented by the sampling teams (salmon that have been sampled, seen but not sampled, and seen and checked for an adipose fin clip only) is converted to a total whole weight (WW) based on a conversion factor of 1.11 and compared to the reported landings for each community. Gutted weight is denoted as GW.

Community (NAFO Division)	Number sampled	Additional Number seen	Avg. sampled GW (kg)	Avg. converted WW (kg)	
Sisimiut (1B)	515	53	3.33	3.70	
Maniitsoq (1C)	904	147	2.99	3.31	
Paamiut (1E)	169	15	2.55	2.82	
Qaqortoq (1F)	120	41	2.53	2.81	
Total	1,708	256	3.02	3.35	
Community	Est. WW sampled/seen $(k g)$	Reported landings (kg)	Adjusted landings (kg)	Difference (kg)	Difference as \% of reported landings
Sisimiut (1B)	2,099	8,798	8,798	0	0\%
Maniitsoq (1C)	3,483	6,266	6,266	0	0\%
Paamiut (1E)	520	3,209	3,209	0	0\%
Qaqortoq (1F)	452	7,962	7,962	0	0\%
Total	6,555	26,235	26,235	0	0\%

Table 2. Reported landings (kg) for the Greenland Atlantic salmon (Salmo salar) fishery (2002-2015) by Northwest Atlantic Fisheries Organization (NAFO) division as reported by the Home Rule Government and the division-specific adjusted landings where the sampling teams observed more fish landed than were reported. Landings from International Council for the Exploration of the Seas Statistical Area XIV (East Greenland) are not included in the assessment but amounted to 1 t in 2015. Shaded cells indicate that sampling took place in that year and division.

Year		NAFO Division						
		1A	1B	1C	1D	1E	1F	Total
2002	Reported	14	78	2,100	3,752	1,417	1,661	9,022
	Adjusted						2,408	9,769
2003	Reported	619	17	1,621	648	1,274	4,516	8,694
	Adjusted			1,782	2,709		5,912	12,312
2004	Reported	3,476	611	3,516	2,433	2,609	2,068	14,712
	Adjusted				4,929			17,209
2005	Reported	1,294	3,120	2,240	756	2,937	4,956	15,303
	Adjusted				2,730			17,276
2006	Reported Adjusted	5,427	2,611	3,424	4,731	2,636	4,192	23,021
2007	Reported	2,019	5,089	6,148	4,470	4,828	2,093	24,647
	Adjusted						2,252	24,806
2008	Reported	4,882	2,210	10,024	1,595	2,457	4,979	26,147
	Adjusted				3,577		5,478	28,627
2009	Reported Adjusted	195	6,151	7,090	2,988	4,296	4,777	25,496

2010		17,263			5,466	6,766	4,252	$\begin{aligned} & 27,975 \\ & 37,949 \end{aligned}$
	Reported		4,558	2,363	2,747			
	Adjusted		4,824		6,566		5,274	43,056
2011	Reported Adjusted	1,858	3,662	5,274	7,977	4,021	4,613	27,407
2012	Reported	5,353	784	14,991	4,564	3,993	2,951	32,636
	Adjusted		2,001				3,694	34,596

Table 2, continued. Reported landings (kg) for the Greenland Atlantic salmon (Salmo salar) fishery (2002-2015) by North Atlantic Fisheries Organization (NAFO) division as reported by the home rule government and the division-specific adjusted landings where the sampling teams observed more fish landed than were reported. Landings from International Council for the Exploration of the Seas Statistical Area XIV (East Greenland) are not included in the assessment but amounted to 1 t in 2015. Shaded cells indicate that sampling took place in that year and division.

		NAFO Division						
Year		1A	1B	1C	1D	1E	1F	Total
2013	Reported	3,052	2,359	17,950	13,356	6,442	3,774	46,933
	Adjusted		2,461			4,408	47,669	
2014	Reported	3,626	2,756	13,762	19,123	14,979	3,416	57,662
	Adjusted					4,036	58,282	
2015	Reported	751	8,801	10,055	17,966	4,170	14,134	55,877
	Adjusted							

Table 3. Reported tag recaptures $(\mathrm{n}=6$) from the 2015 Greenland Atlantic salmon (Salmo salar) fishery. NAFO division refers to Northwest Atlantic Fisheries Organization statistical areas. Empty cells identify incomplete recapture or released information.

Tag type	Tag code (Seq. code)	Release country	River released	Release year	Recapture Community (NAFO Division)	Recapture year
carlin	322,343 (green)	USA	Penobscot	1986	Paamuit (1E)	
carlin	846,920 (green)	USA	Penobscot	1991	Paamuit (1E)	
carlin	42501 (green)	Canada			Paamuit (1E)	Nanortalik (1F)
carlin	AA 26325 (light green)	Canada	Musquodoboit	1985	Qaqortoq (1F)	2015
carlin	R 799099 S (light green)	Sweden	Nissan	2014	Paamuit (1E)	2015
carlin	MSA 01,153 (blue)	Canada	Miramichi	2014		

Table 4. The continental proportions of North American (NA) and European (E) Atlantic salmon (Salmo salar) caught in West Greenland 2015 by Northwest Atlantic Fisheries Organization (NAFO) Division. There were 34 fish without origin, which are not included here.

NAFO Division	Fishing dates	Number			Percentages	
		NA	E	Totals	NA	E
1B	Sep 14 - Oct 11	410	87	497	82.5	17.5
1C	Sep 07 - Sep 28	754	136	890	84.7	15.3
1E	Sep $02-$ Oct 01	83	86	169	49.1	50.9
1F	Sep 04 - Sep 17	90	28	118	76.3	23.7
Total		1337	337	1674	79.9	20.1

Table 5. The catch weighted numbers of North American (NA) and European (E) Atlantic salmon (Salmo salar) caught at West Greenland from 1971-2014 and the proportion of the catch by weight. Numbers are rounded to the nearest hundred fish. Continent of origin assignments were based on scale characteristics until 1995, scale characteristics and DNA based assignments until 2001, and DNA based assignments only from 2002 onwards.

	Proportion weighted by catch		Numbers of Salmon caught	
	NA	E	NA	E
1982	57	43	192,200	143,800
1983	40	60	39,500	60,500
1984	54	46	48,800	41,200
1985	47	53	143,500	161,500
1986	59	41	188,300	131,900
1987	59	41	171,900	126,400
1988	43	57	125,500	168,800
1989	55	45	65,000	52,700
1990	74	26	62,400	21,700
1991	63	37	111,700	65,400
1992	45	55	46,900	38,500
1993	-	-	-	-
1994	-	-	-	-
1995	67	33	21,400	10,700
1996	70	30	22,400	9,700
1997	85	15	18,000	3,300
1998	79	21	3,100	900
1999	91	9	5,700	600
2000	65	35	5,100	2,700
2001	67	33	9,400	4,700
2002	69	31	2,300	1,000

Table 5, continued. The catch weighted numbers of North American (NA) and European (E) Atlantic salmon (Salmo salar) caught at West Greenland from 1971-2014 and the proportion of the catch by weight. Numbers are rounded to the nearest hundred fish. Continent of origin assignments were based on scale characteristics until 1995, scale characteristics and DNA based assignments until 2001, and DNA based assignments only from 2002 onwards.

	Proportion weighted by catch		Numbers of Salmon caught	
	NA	E	NA	E
2003	64	36	2,600	1,400
2004	72	28	3,900	1,500
2005	74	26	3,500	1,200
2006	69	31	4,000	1,800
2007	76	24	6,100	1,900
2008	86	14	8,000	1,300
2009	89	11	7,000	800
2010	80	20	10,000	2,600
2011	93	7	7,500	600
2012	79	21	7,800	2,100
2013	82	18	11,500	2,700
2014	72	28	12,800	5,400
2015	79	21	13,500	3,900

Table 6. Annual mean fork lengths and whole weights by continent of origin (NA - North American and E - European) and sea age (1SW - 1 sea-winter, 2SW - 2 sea-winter and PS - previous spawner) of Atlantic salmon (Salmo salar) caught at West Greenland, 1969-2015.

	Whole weight (kg) Seaage \& origin									Fork length (cm) Sea age \& origin					
	1SW		2SW		PS		All seaag		TOTAL	1SW		2SW		PS	
	NA	E	NA	E	NA	E	NA	E		NA	E	NA	E	NA	E
1969	3.12	3.76	5.48	5.80	-	5.13	3.25	3.86	3.58	65.0	68.7	77.0	80.3	-	75.3
1970	2.85	3.46	5.65	5.50	4.85	3.80	3.06	3.53	3.28	64.7	68.6	81.5	82.0	78.0	75.0
1971	2.65	3.38	4.30	-	-	-	2.68	3.38	3.14	62.8	67.7	72.0	-	-	-
1972	2.96	3.46	5.85	6.13	265	4.00	3.25	3.55	3.44	64.2	67.9	80.7	82.4	61.5	69.0
1973	3.28	4.54	9.47	10.00	-	-	3.83	4.66	4.18	64.5	70.4	88.0	96.0	61.5	-
1974	3.12	3.81	7.06	8.06	3.42	-	3.22	3.86	3.58	64.1	68.1	82.8	87.4	66.0	-
1975	2.58	3.42	6.12	6.23	2.60	4.80	2.65	3.48	3.12	61.7	67.5	80.6	82.2	66.0	75.0
1976	2.55	3.21	6.16	7.20	3.55	3.57	2.75	3.24	3.04	61.3	65.9	80.7	87.5	72.0	70.7
1977	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	2.96	3.50	7.00	7.90	2.45	6.60	3.04	3.53	3.35	63.7	67.3	83.6	-	60.8	85.0
1979	2.98	3.50	7.06	7.60	3.92	6.33	3.12	3.56	3.34	63.4	66.7	81.6	85.3	61.9	82.0
1980	2.98	3.33	6.82	6.73	3.55	3.90	3.07	3.38	3.22	64.0	66.3	82.9	83.0	67.0	70.9
1981	2.77	3.48	6.93	7.42	4.12	3.65	2.89	3.58	3.17	62.3	66.7	82.8	84.5	72.5	-
1982	2.79	3.21	5.59	5.59	3.96	5.66	2.92	3.43	3.11	62.7	66.2	78.4	77.8	71.4	80.9
1983	2.54	3.01	5.79	5.86	3.37	3.55	3.02	3.14	3.10	61.5	65.4	81.1	81.5	68.2	70.5
1984	264	2.84	5.84	5.77	3.62	5.78	3.20	3.03	3.11	62.3	63.9	80.7	80.0	69.8	79.5
1985	2.50	2.89	5.42	5.45	5.20	4.97	2.72	3.01	2.87	61.2	64.3	78.9	78.6	79.1	77.0
1986	275	3.13	6.44	6.08	3.32	4.37	2.89	3.19	3.03	62.8	65.1	80.7	79.8	66.5	73.4
1987	3.00	3.20	6.36	5.96	4.69	4.70	3.10	3.26	3.16	64.2	65.6	81.2	79.6	74.8	74.8
1988	2.83	3.36	6.77	6.78	4.75	4.64	2.93	3.41	3.18	63.0	66.6	82.1	82.4	74.7	73.8
1989	2.56	2.86	5.87	5.77	4.23	5.83	2.77	2.99	2.87	62.3	64.5	80.8	81.0	73.8	82.2
1990	2.53	2.61	6.47	5.78	3.90	5.09	2.67	2.72	2.69	623	62.7	83.4	81.1	72.6	78.6
1991	2.42	2.54	5.82	6.23	5.15	5.09	2.57	2.79	2.65	61.6	62.7	80.6	82.2	81.7	80.0
1992	2.54	2.66	6.49	6.01	4.09	5.28	2.86	2.74	2.81	62.3	63.2	83.4	81.1	77.4	82.7
1995	2.37	2.67	6.09	5.88	3.71	4.98	2.45	2.75	2.56	61.0	63.2	81.3	81.0	70.9	81.3
1996	2.63	286	6.50	6.30	4.98	5.44	2.83	2.90	2.88	62.8	64.0	81.4	81.1	77.1	79.4
1997	2.57	2.82	7.95	6.11	4.82	6.9	2.63	2.84	2.71	62.3	63.6	85.7	84.0	79.4	87.0
1998	2.72	2.83	6.44	-	3.28	4.77	2.76	284	2.78	62.0	62.7	84.0	-	66.3	76.0
1999	3.02	3.03	7.59	-	4.20	-	3.09	3.03	3.08	63.8	63.5	86.6	-	70.9	-
2000	2.47	2.81	-	-	2.58	-	2.47	2.81	2.57	60.7	63.2	-	-	64.7	-
2001	289	3.03	6.76	5.96	4.41	4.06	2.95	3.09	3.00	63.1	63.7	81.7	79.1	75.3	72.1
2002	2.84	292	7.12	-	5.00	-	2.89	2.92	2.90	62.6	62.1	83.0	-	75.8	-
2003	2.94	3.08	8.82	5.58	4.04	-	3.02	3.10	3.04	63	64.4	86.1	78.3	71.4	-
2004	3.11	2.95	7.33	5.22	4.71	6.48	3.17	3.22	3.18	64.7	65.0	86.2	76.4	77.6	88.0
2005	3.19	3.33	7.05	4.19	4.31	2.89	3.31	3.33	3.31	65.9	66.4	83.3	75.5	73.7	62.3
2006	3.10	3.25	9.72		5.05	3.67	3.25	3.26	3.24	65.3	65.3	90.0		76.8	69.5
2007	2.89	2.87	6.19	6.47	4.94	3.57	2.98	2.99	2.98	63.5	63.3	80.9	80.6	76.7	71.3
2008	3.04	3.03	6.35	7.47	3.82	3.39	3.08	3.07	3.08	64.6	63.9	80.1	85.5	71.1	73.0
2009	3.28	3.40	7.59	6.54	5.25	4.28	3.48	3.67	3.50	64.9	65.5	84.6	81.7	75.9	73.5
2010	3.44	3.24	6.40	5.45	4.17	3.92	3.47	3.28	3.42	66.7	65.2	80.0	75.0	72.4	70.0
2011	3.30	3.18	5.69	4.94	4.46	5.11	3.39	3.49	3.40	65.8	64.7	78.6	75.0	73.7	76.3
2012	3.34	3.38	6.00	4.51	4.65	3.65	3.44	3.40	3.44	65.4	64.9	75.9	70.4	72.8	68.9
2013	3.33	3.16	6.43	4.51	3.64	5.38	3.39	3.20	3.35	66.2	64.6	81.0	72.8	69.9	73.6
2014	3.25	3.02	7.60	6.00	4.47	5.42	3.39	3.13	3.32	65.6	63.6	86.0	78.7	73.6	83.5
2015	3.36	3.13	7.52	7.10	4.53	3.81	3.42	3.18	3.37	65.6	64.4	84.1	82.5	74.2	67.2

Table 7. Mean fork lengths (cm) and whole weight (kg) by sea age (1SW - 1 sea-winter and 2SW 2 sea-winter), continent of origin and Northwest Atlantic Fisheries Organization (NAFO) division for Atlantic salmon (Salmo salar) caught at West Greenland in 2015 with corresponding standard deviation (S.D.). Table does not include salmon of unknown age, origin, fork length, or weight.

NAFO Div.	1SW		2SW		Previous spawners		All sea ages			
	$\begin{aligned} & \text { Fork } \\ & \text { length (cm) } \\ & \text { (S.D.) } \end{aligned}$	Whole weight (kg) (S.D.)	$\begin{aligned} & \text { Fork } \\ & \text { length (cm) } \\ & \text { (S.D.) } \\ & \hline \end{aligned}$	Whole weight (kg) (S.D.)	$\begin{aligned} & \text { Fork } \\ & \text { length (cm) } \\ & \text { (S.D.) } \end{aligned}$	Whole weight (kg) (S.D.)	$\begin{gathered} \text { Fork } \\ \text { length }(\mathrm{cm}) \\ \text { (S.D.) } \\ \hline \end{gathered}$		Whole weight (kg) (S.D.)	No.
North American and European										
1B	$\begin{aligned} & 66.4 \\ & (3.4) \end{aligned}$	$\begin{gathered} 3.56 \\ (0.64) \end{gathered}$	$\begin{aligned} & 85.7 \\ & (3.0) \end{aligned}$	$\begin{gathered} 8.01 \\ (1.34) \end{gathered}$	$\begin{aligned} & 80.2 \\ & (8.2) \end{aligned}$	$\begin{gathered} 5.57 \\ (1.86) \end{gathered}$	$\begin{aligned} & 67.2 \\ & (4.9) \end{aligned}$	489	$\begin{gathered} 3.7 \\ (0.99) \end{gathered}$	487
1 C	$\begin{aligned} & 65.4 \\ & (3.2) \end{aligned}$	$\begin{gathered} 3.34 \\ (0.58) \end{gathered}$	$\begin{aligned} & 78.9 \\ & (2.2) \end{aligned}$	$\begin{gathered} 5.99 \\ (1.15) \end{gathered}$	$\begin{aligned} & 69.6 \\ & (8.0) \end{aligned}$	$\begin{gathered} 3.79 \\ (1.43) \end{gathered}$	$\begin{aligned} & 65.5 \\ & \text { (3.5) } \end{aligned}$	876	$\begin{gathered} 3.36 \\ (0.64) \end{gathered}$	876
1E	$\begin{aligned} & 63.9 \\ & (3.9) \end{aligned}$	$\begin{gathered} 2.83 \\ (0.54) \end{gathered}$			66.0	2.79	$\begin{aligned} & 63.9 \\ & (3.9) \end{aligned}$	164	$\begin{gathered} 2.83 \\ (0.54) \end{gathered}$	164
1F	$\begin{aligned} & 63.2 \\ & (3.5) \end{aligned}$	$\begin{gathered} 2.83 \\ (0.50) \end{gathered}$			$\begin{aligned} & 64.2 \\ & (0.8) \end{aligned}$	$\begin{gathered} 2.90 \\ (0.01) \end{gathered}$	$\begin{aligned} & 63.2 \\ & (3.4) \end{aligned}$	117	$\begin{gathered} 2.83 \\ (0.50) \end{gathered}$	117
All A reas	$\begin{aligned} & 65.4 \\ & (3.5) \end{aligned}$	$\begin{gathered} 3.31 \\ (0.64) \end{gathered}$	$\begin{aligned} & 83.6 \\ & (4.2) \end{aligned}$	$\begin{gathered} 7.39 \\ (1.57) \end{gathered}$	$\begin{aligned} & 73.8 \\ & \text { (9.6) } \end{aligned}$	$\begin{gathered} 4.48 \\ (1.84) \end{gathered}$	$\begin{aligned} & 65.7 \\ & (4.2) \end{aligned}$	1646	$\begin{gathered} 3.37 \\ (0.80) \end{gathered}$	1644

North American

1B	$\begin{aligned} & 66.4 \\ & (3.2) \end{aligned}$	$\begin{gathered} 3.56 \\ (0.61) \end{gathered}$	$\begin{aligned} & 86.4 \\ & (3.0) \end{aligned}$	$\begin{gathered} 8.22 \\ (1.53) \end{gathered}$	$\begin{aligned} & 80.9 \\ & (8.0) \end{aligned}$	$\begin{gathered} 5.64 \\ (1.92) \end{gathered}$	$\begin{aligned} & 67.2 \\ & (4.9) \end{aligned}$	402	$\begin{gathered} 3.69 \\ (0.97) \end{gathered}$	401
1 C	$\begin{aligned} & 65.6 \\ & (3.1) \end{aligned}$	$\begin{gathered} 3.37 \\ (0.58) \end{gathered}$	$\begin{gathered} 79.5 \\ (2.15) \end{gathered}$	$\begin{gathered} 6.10 \\ (1.38) \end{gathered}$	$\begin{aligned} & 69.6 \\ & (8.0) \end{aligned}$	$\begin{gathered} 3.79 \\ (1.43) \end{gathered}$	$\begin{aligned} & 65.7 \\ & (3.4) \end{aligned}$	742	$\begin{gathered} 3.39 \\ (0.64) \end{gathered}$	742
1E	$\begin{aligned} & 64.6 \\ & (3.9) \end{aligned}$	$\begin{gathered} 2.90 \\ (0.59) \end{gathered}$			66.0	2.79	$\begin{aligned} & 64.7 \\ & (3.9) \end{aligned}$	81	$\begin{gathered} 2.88 \\ (0.59) \end{gathered}$	81
1F	$\begin{aligned} & 63.5 \\ & (3.4) \end{aligned}$	$\begin{gathered} 2.88 \\ (0.49) \end{gathered}$			64.7	2.89	$\begin{aligned} & 63.5 \\ & (3.5) \end{aligned}$	89	$\begin{gathered} 2.88 \\ (0.48) \end{gathered}$	89
All A reas	$\begin{aligned} & 65.6 \\ & (3.3) \end{aligned}$	$\begin{gathered} 3.36 \\ (0.62) \end{gathered}$	$\begin{aligned} & 84.1 \\ & (4.3) \end{aligned}$	$\begin{gathered} 7.52 \\ (1.75) \end{gathered}$	$\begin{aligned} & 74.2 \\ & (9.7) \end{aligned}$	$\begin{gathered} 4.53 \\ (1.88) \end{gathered}$	$\begin{aligned} & 65.9 \\ & (4.1) \end{aligned}$	1314	$\begin{gathered} 3.42 \\ (0.78) \end{gathered}$	1313
European										
1B	$\begin{aligned} & 66.3 \\ & (3.9) \end{aligned}$	$\begin{gathered} 3.59 \\ (0.74) \end{gathered}$	$\begin{gathered} 84.3 \\ (2.97) \end{gathered}$	$\begin{gathered} 7.57 \\ (0.94) \end{gathered}$	70.8	4.71	$\begin{aligned} & 67.0 \\ & (5.1) \end{aligned}$	87	$\begin{gathered} 3.74 \\ (1.05) \end{gathered}$	86
1 C	$\begin{aligned} & 64.3 \\ & \text { (3.4) } \end{aligned}$	$\begin{gathered} 3.16 \\ (0.57) \end{gathered}$	77.0	5.66			$\begin{aligned} & 64.4 \\ & (3.5) \end{aligned}$	134	$\begin{gathered} 3.18 \\ (0.61) \end{gathered}$	134
1E	$\begin{aligned} & 63.2 \\ & (3.8) \end{aligned}$	$\begin{gathered} 2.78 \\ (0.49) \end{gathered}$					$\begin{aligned} & 63.2 \\ & (3.8) \end{aligned}$	83	$\begin{gathered} 2.78 \\ (0.49) \end{gathered}$	83
1F	$\begin{aligned} & 62.2 \\ & (3.6) \end{aligned}$	$\begin{gathered} 2.67 \\ (0.53) \end{gathered}$	-	-	63.6	2.91	$\begin{aligned} & 62.2 \\ & (3.5) \end{aligned}$	28	$\begin{gathered} 2.68 \\ (0.53) \end{gathered}$	28
All A reas	$\begin{aligned} & 64.4 \\ & (3.9) \end{aligned}$	$\begin{gathered} 3.13 \\ (0.68) \end{gathered}$	$\begin{aligned} & 82.5 \\ & (4.4) \end{aligned}$	$\begin{gathered} 7.10 \\ (1.23) \end{gathered}$	$\begin{aligned} & 67.2 \\ & (5.1) \end{aligned}$	$\begin{gathered} 3.81 \\ (1.28) \end{gathered}$	$\begin{aligned} & 64.6 \\ & (4.3) \end{aligned}$	332	$\begin{gathered} 3.18 \\ (0.81) \end{gathered}$	331

Table 8. The smolt-age (river age) composition (\%) of Atlantic salmon (Salmo salar) by continent of origin (NA - North American and E - European) and Northwest Atlantic Fisheries Organization (NAFO) division caught in 2015 at West Greenland. Table does not include salmon of unknown age or origin $(n=73)$.

		River age (\%)						Total No.
Division	Origin	1	2	3	4	5	6	
1B	NA	0.0	35.8	37.5	22.5	4.0	0.3	400
	E	7.0	46.5	36.0	7.0	3.5	0.0	86
		1.2	37.7	37.2	19.8	3.9	0.2	486
1C	NA	0.1	31.5	41.8	20.4	6.2	0.0	740
	E	8.3	57.9	27.8	5.3	0.8	0.0	133
		1.4	35.5	39.6	18.1	5.4	0.0	873
1E	NA	0.0	18.5	44.4	23.5	12.3	1.2	81
	E	10.1	58.2	26.6	5.1	0.0	0.0	79
		5.0	38.1	35.6	14.4	6.3	0.6	160
1F	NA	0.0	26.1	40.9	26.1	6.8	0.0	88
	E	17.9	57.1	17.9	7.1	0.0	0.0	28
		4.3	33.6	35.3	21.6	5.2	0.0	116
All A reas	NA	0.1	31.6	40.6	21.6	6.0	0.2	1309
	E	9.2	54.9	28.8	5.8	1.2	0.0	326
		1.9	36.3	38.2	18.5	5.0	0.1	1635

Table 9. River age distribution (\%) for North American and European origin Atlantic salmon (Salmo salar) caught at West Greenland, 1968-2015. Table does not include salmon of unknown age or origin. Not all rows add to 1.0 because of rounding errors.

YEAR	North American							
1968	0.3	19.6	40.4	21.3	16.2	2.2	0.0	0.0
1969	0.0	27.1	45.8	19.6	6.5	0.9	0.0	0.0
1970	0.0	58.1	25.6	11.6	2.3	2.3	0.0	0.0
1971	1.2	32.9	36.5	16.5	9.4	3.5	0.0	0.0
1972	0.8	31.9	51.4	10.6	3.9	1.2	0.4	0.0
1973	2.0	40.8	34.7	18.4	2.0	2.0	0.0	0.0
1974	0.9	36.0	36.6	12.0	11.7	2.6	0.3	0.0
1975	0.4	17.3	47.6	24.4	6.2	4.0	0.0	0.0
1976	0.7	42.6	30.6	14.6	10.9	0.4	0.4	0.0
1978	2.7	31.9	43.0	13.6	6.0	2.0	0.9	0.0
1979	4.2	39.9	40.6	11.3	2.8	1.1	0.1	0.0
1980	5.9	36.3	32.9	16.3	7.9	0.7	0.1	0.0
1981	3.5	31.6	37.5	19.0	6.6	1.6	0.2	0.0
1982	1.4	37.7	38.3	15.9	5.8	0.7	0.0	0.2
1983	3.1	47.0	32.6	12.7	3.7	0.8	0.1	0.0
1984	4.8	51.7	28.9	9.0	4.6	0.9	0.2	0.0
1985	5.1	41.0	35.7	12.1	4.9	1.1	0.1	0.0
1986	2.0	39.9	33.4	20.0	4.0	0.7	0.0	0.0
1987	3.9	41.4	31.8	16.7	5.8	0.4	0.0	0.0
1988	5.2	31.3	30.8	20.9	10.7	1.0	0.1	0.0
1989	7.9	39.0	30.1	15.9	5.9	1.3	0.0	0.0
1990	8.8	45.3	30.7	12.1	2.4	0.5	0.1	0.0
1991	5.2	33.6	43.5	12.8	3.9	0.8	0.3	0.0
1992	6.7	36.7	34.1	19.1	3.2	0.3	0.0	0.0
1995	2.4	19.0	45.4	22.6	8.8	1.8	0.1	0.0
1996	1.7	18.7	46.0	23.8	8.8	0.8	0.1	0.0
1997	1.3	16.4	48.4	17.6	15.1	1.3	0.0	0.0
1998	4.0	35.1	37.0	16.5	6.1	1.1	0.1	0.0
1999	2.7	23.5	50.6	20.3	2.9	0.0	0.0	0.0
2000	3.2	26.6	38.6	23.4	7.6	0.6	0.0	0.0
2001	1.9	15.2	39.4	32.0	10.8	0.7	0.0	0.0
2002	1.5	27.4	46.5	14.2	9.5	0.9	0.0	0.0
2003	2.6	28.8	38.9	21.0	7.6	1.1	0.0	0.0
2004	1.9	19.1	51.9	22.9	3.7	0.5	0.0	0.0
2005	2.7	21.4	36.3	30.5	8.5	0.5	0.0	0.0
2006	0.6	13.9	44.6	27.6	12.3	1.0	0.0	0.0
2007	1.6	27.7	34.5	26.2	9.2	0.9	0.0	0.0
2008	0.9	25.1	51.9	16.8	4.7	0.6	0.0	0.0
2009	2.6	30.7	47.3	15.4	3.7	0.4	0.0	0.0
2010	1.6	21.7	47.9	21.7	6.3	0.8	0.0	0.0
2011	1.0	35.9	45.9	14.4	2.8	0.0	0.0	0.0
2012	0.3	29.8	39.4	23.3	6.5	0.7	0.0	0.0
2013	0.1	32.6	37.3	20.8	8.6	0.6	0.0	0.0
2014	0.4	26.0	44.5	21.9	6.9	0.4	0.0	0.0
2015	0.1	31.6	40.6	21.6	6.0	0.2	0.0	0.0
10 yr mean (2006-2015)	0.9	27.5	43.4	21.0	6.7	0.6	0.0	0.0
Overall Mean	2.5	31.5	39.7	18.5	6.7	1.1	0.1	0.0

Table 9, continued. River age distribution (\%) for North American and European origin Atlantic salmon (Salmo salar) caught at West Greenland, 1968-2015. Table does not include salmon of unknown age or origin. Not all rows add to 1.0 because of rounding errors.

YEAR	1	2	3	4	5	6	7	8
European								
1968	21.6	60.3	15.2	2.7	0.3	0.0	0.0	0.0
1969	0.0	83.8	16.2	0.0	0.0	0.0	0.0	0.0
1970	0.0	90.4	9.6	0.0	0.0	0.0	0.0	0.0
1971	9.3	66.5	19.9	3.1	1.2	0.0	0.0	0.0
1972	11.0	71.2	16.7	1.0	0.1	0.0	0.0	0.0
1973	26.0	58.0	14.0	2.0	0.0	0.0	0.0	0.0
1974	22.9	68.2	8.5	0.4	0.0	0.0	0.0	0.0
1975	26.0	53.4	18.2	2.5	0.0	0.0	0.0	0.0
1976	23.5	67.2	8.4	0.6	0.3	0.0	0.0	0.0
1978	26.2	65.4	8.2	0.2	0.0	0.0	0.0	0.0
1979	23.6	64.8	11.0	0.6	0.0	0.0	0.0	0.0
1980	25.8	56.9	14.7	2.5	0.2	0.0	0.0	0.0
1981	15.4	67.3	15.7	1.6	0.0	0.0	0.0	0.0
1982	15.6	56.1	23.5	4.2	0.7	0.0	0.0	0.0
1983	34.7	50.2	12.3	2.4	0.3	0.1	0.1	0.0
1984	22.7	56.9	15.2	4.2	0.9	0.2	0.0	0.0
1985	20.2	61.6	14.9	2.7	0.6	0.0	0.0	0.0
1986	19.5	62.5	15.1	2.7	0.2	0.0	0.0	0.0
1987	19.2	62.5	14.8	3.3	0.3	0.0	0.0	0.0
1988	18.4	61.6	17.3	2.3	0.5	0.0	0.0	0.0
1989	18.0	61.7	17.4	2.7	0.3	0.0	0.0	0.0
1990	15.9	56.3	23.0	4.4	0.2	0.2	0.0	0.0
1991	20.9	47.4	26.3	4.2	1.2	0.0	0.0	0.0
1992	11.8	38.2	42.8	6.5	0.6	0.0	0.0	0.0
1995	14.8	67.3	17.2	0.6	0.0	0.0	0.0	0.0
1996	15.8	71.1	12.2	0.9	0.0	0.0	0.0	0.0
1997	4.1	58.1	37.8	0.0	0.0	0.0	0.0	0.0
1998	28.6	60.0	7.6	2.9	0.0	1.0	0.0	0.0
1999	27.7	65.1	7.2	0.0	0.0	0.0	0.0	0.0
2000	36.5	46.7	13.1	2.9	0.7	0.0	0.0	0.0
2001	16.0	51.2	27.3	4.9	0.7	0.0	0.0	0.0
2002	9.4	62.9	20.1	7.6	0.0	0.0	0.0	0.0
2003	16.2	58.0	22.1	3.0	0.8	0.0	0.0	0.0
2004	18.3	57.7	20.5	3.2	0.2	0.0	0.0	0.0
2005	19.2	60.5	15.0	5.4	0.0	0.0	0.0	0.0
2006	17.7	54.0	23.6	3.7	0.9	0.0	0.0	0.0
2007	7.0	48.5	33.0	10.5	1.0	0.0	0.0	0.0
2008	7.0	72.8	19.3	0.8	0.0	0.0	0.0	0.0
2009	14.3	59.5	23.8	2.4	0.0	0.0	0.0	0.0
2010	11.3	57.1	27.3	3.4	0.8	0.0	0.0	0.0
2011	19.0	51.7	27.6	1.7	0.0	0.0	0.0	0.0
2012	9.3	63.0	24.0	3.7	0.0	0.0	0.0	0.0
2013	4.5	68.2	24.4	2.5	0.5	0.0	0.0	0.0
2014	4.5	60.7	30.8	4.0	0.0	0.0	0.0	0.0
2015	9.2	54.9	28.8	5.8	1.2	0.0	0.0	0.0
10 yr mean								
(2006-2015)	10.4	59.0	26.3	3.8	0.4	0.0	0.0	0.0
Overall Mean	16.9	60.8	19.1	2.8	0.3	0.0	0.0	0.0

Table 10. The sea-age (1SW - 1 sea-winter, 2SW - 2 sea-winter, and Previous Spawners) composition of Atlantic salmon (Salmo salar) by continent of origin (NA - North American and EEuropean) and Northwest Atlantic Fisheries Organization (NAFO) division caught at West Greenland in 2015. Table does not include salmon with unknown age or origin ($\mathrm{n}=62$). Not all rows add to 100 because of rounding errors.

NAFO	Origin	Sea-age composition (\%)			
		1SW	2SW	Previous Spawners	Total No.
1B	NA	95.3	1.5	3.2	402
	E	95.4	3.4	1.1	87
		95.3	1.8	2.9	489
1 C	NA	97.6	0.4	2.0	742
	E	99.3	0.7	0.0	134
		97.8	0.5	1.7	876
1E	NA	98.8	0.0	1.2	81
	E	100.0	0.0	0.0	83
		99.4	0.0	0.6	164
1F	NA	98.9	0.0	1.1	89
	E	96.4	0.0	3.6	28
		98.3	0.0	1.7	117
All areas	NA	97.0	0.7	2.3	1314
	E	98.2	1.2	0.6	332
		97.3	0.8	1.9	1646

Figure 1. Nominal catches and commercial quotas (metric tons, round fresh weight) of Atlantic salmon (Salmon salar) at West Greenland for 1960-2015 (top panel) and 2006-2015 (bottom panel). Total reported landings from 2006-2015 are displayed by landings type. From 2009 to the present, Private landings are reported as coming from licensed or nonlicensed fishers. No quotas were set from 2003-2011, but from 2012-2014 an annual quota was set and applied to factory landings only, and in 2015 a quota was set for the entire fishery.

$$
\begin{array}{|l}
\hline
\end{array}
$$

Figure 2. Map of southwest Greenland showing communities to which Atlantic salmon (Salmo salar) have historically been landed. Northwest Atlantic Fisheries Organization Division (NAFO) divisions (1A-1F) are also shown.

Figure 3. The weighted proportions of North American and European Atlantic salmon (Salmo salar) caught at West Greenland from 1982-2015. Proportions were weighted by the estimated numbers of salmon, by origin, for each division according to the adjusted landings.

Figure 4. Proportions of unsampled adjusted landings and North American origin and European origin Atlantic salmon (Salmo salar, left panels) and of sampled adjusted landings and North American origin and European origin Atlantic salmon (right panels) at West Greenland from 20052015. Rows represent Northwest Atlantic Fisheries Organization divisions (NAFO, top row represents division 1A and bottom row represents division 1F). Year-division combinations with data identify when and where sampling occurred. Division 1A 2005 value is from 1 sample.

Figure 5. The weighted numbers of North American and European Atlantic salmon (Salmo salar) caught at West Greenland from 1982-2015 (top) and 2006-2015 (bottom). Numbers are rounded to the nearest hundred fish. In 2015, it is estimated that approximately 13,500 and 3,900 North American and European origin fish were harvested, respectively.

Figure 6. Mean uncorrected whole weight (kg) of European and North American 1 sea-winter (fish that have spent one winter at sea) Atlantic salmon (Salmo salar) sampled in West Greenland from 1969-2015.

Procedures for Issuing Manuscripts in the
 Northeast Fisheries Science Center Reference Document (CRD) Series

Clearance

All manuscripts submitted for issuance as CRDs must have cleared the NEFSC's manuscript/abstract/ webpage review process. If any author is not a federal employee, he/she will be required to sign an "NEFSC Release-of-Copyright Form." If your manuscript includes material from another work which has been copyrighted, then you will need to work with the NEFSC's Editorial Office to arrange for permission to use that material by securing release signatures on the "NEFSC Use-of-Copyrighted-Work Permission Form."

For more information, NEFSC authors should see the NEFSC's online publication policy manual, "Manuscript/abstract/webpage preparation, review, and dissemination: NEFSC author's guide to policy, process, and procedure," located in the Publications/Manuscript Review section of the NEFSC intranet page.

Organization

Manuscripts must have an abstract and table of contents, and (if applicable) lists of figures and tables. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area" and/or "Experimental Apparatus," "Methods," "Results," "Discussion," "Conclusions," "Acknowledgments," and "Literature/References Cited."

Style

The CRD series is obligated to conform with the style contained in the current edition of the United States Government Printing Office Style Manual. That style manual is silent on many aspects of scientific manuscripts. The CRD series relies more on the CSE Style Manual. Manuscripts should be prepared to conform with these style manuals.

The CRD series uses the American Fisheries Society's guides to names of fishes, mollusks, and decapod
crustaceans, the Society for Marine Mammalogy's guide to names of marine mammals, the Biosciences Information Service's guide to serial title abbreviations, and the ISO's (International Standardization Organization) guide to statistical terms.

For in-text citation, use the name-date system. A special effort should be made to ensure that all necessary bibliographic information is included in the list of cited works. Personal communications must include date, full name, and full mailing address of the contact.

Preparation

Once your document has cleared the review process, the Editorial Office will contact you with publication needs - for example, revised text (if necessary) and separate digital figures and tables if they are embedded in the document. Materials may be submitted to the Editorial Office as email attachments or intranet downloads. Text files should be in Microsoft Word, tables may be in Word or Excel, and graphics files may be in a variety of formats (JPG, GIF, Excel, PowerPoint, etc.).

Production and Distribution

The Editorial Office will perform a copy-edit of the document and may request further revisions. The Editorial Office will develop the inside and outside front covers, the inside and outside back covers, and the title and bibliographic control pages of the document.

Once the CRD is ready, the Editorial Office will contact you to review it and submit corrections or changes before the document is posted online.

A number of organizations and individuals in the Northeast Region will be notified by e-mail of the availability of the document online.

Publications and Reports of the

Northeast Fisheries Science Center

The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "conducting ecosystem-based research and assessments of living marine resources, with a focus on the Northeast Shelf, to promote the recovery and long-term sustainability of these resources and to generate social and economic opportunities and benefits from their use." Results of NEFSC research are largely reported in primary scientific media (e.g., anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Currently, there are three such media:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of long-term field or lab studies of important species or habitats; synthesis reports for important species or habitats; annual reports of overall assessment or monitoring programs; manuals describing program-wide surveying or experimental techniques; literature surveys of important species or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab studies; progress reports on experiments, monitoring, and assessments; background papers for, collected abstracts of, and/or summary reports of scientific meetings; and simple bibliographies. Issues receive internal scientific review and most issues receive copy editing.

Resource Survey Report (formerly Fishermen's Report) -- This information report is a regularly-issued, quick-turnaround report on the distribution and relative abundance of selected living marine resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. This report undergoes internal review, but receives no technical or copy editing.

[^1]
[^0]: Sheehan TF, Davison P, Deschamps D, Drumm A, Millane M, Morgan T, Music P, Niven A, Nygaard R, King TL, Robertson MJ, Maoiléidigh NO 2017. The international sampling program: Continent of origin and biological characteristics of Atlantic salmon collected at West Greenland in 2015. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 17-13; 28 p. Available from: http://www.nefsc.noaa.gov/publications/

[^1]: TO OBTAIN A COPY of a NOAA Technical Memorandum NMFS-NE or a Northeast Fisheries Science Center Reference Document, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2350) or consult the NEFSC webpage on "Reports and Publications" (http://www.nefsc.noaa.gov/nefsc/publications/). To access Resource Survey Report, consult the Ecosystem Surveys Branch webpage (http://www.nefsc.noaa.gov/femad/ecosurvey/mainpage/).

 ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.

